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Abstract— Aiming at characteristics of Ballistic missile, the 

GPS/SINS deeply integrated navigation algorithm based on 

Strong Tracking Adaptive Unscented Kalman Filter (STAUKF) 

in the Launch inertial coordinates is studied in this paper. The 

algorithm is based on the thought of fading, by introducing 

suboptimal multiple fading matrix into UKF filter, perform 

real-time adjustment on the error covariance of predicted state 

adaptively, so as to achieve strong tracking of the rapidly 

changing state. Ballistic trajectory simulation results show that 

suboptimal multiple fading matrix were introduced into UKF 

can make better use of prior information and it has stronger 

tracking ability for highly maneuvering targets. The improved 

algorithm ensures the original UKF filtering algorithm accuracy, 

at the same time, the system error is shown to converge in a 

shorter period of time. 
 
Index Terms— Adaptive Unscented Kalman Filter, Launch 

inertial coordinates, Deeply integrated, Strong tracking  

 

I. INTRODUCTION 

  The deeply integrated navigation system based on 

GPS/SINS is a high-level integrated navigation method. It 

uses the samples in the in-phase or quadrature GPS receiver 

channel to update the state of the navigation filter. Carrier 

control and code generator also comes from the navigation 

filter output correction, which can obtain higher carrier phase 

tracking bandwidth and anti-interference ability. Deeply 

integrated navigation systems operate in highly dynamic and 

strong interference environments, and their correlator output 

is highly nonlinear [1]. 

  Generally there are two methods for this nonlinear 

problem [2-3]. One is to linearize the nonlinear function and 

to ignore or approximate the higher order term. The most 

commonly used is the Extended Kalman Filter (EKF). The 

other filtering method to deal with nonlinear problems is to 

use a sampling method to approximate the nonlinear 

distribution, such as the Unscented Kalman Filter (UKF) 

algorithm [4-5], which can avoid the problem of complex 

computation of Jacobian matrix in EKF and other issues.  
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However, these two algorithms have the problems of poor 

robustness and poor tracking ability in the case of inaccurate 

models or sudden changes in state. To solve this problem, 

Donghua Zhou proposed the concept of strong tracking filter 

(STF) based on the principle of orthogonality of innovation 

vectors, and applied it in the improvement of EKF. The strong 

tracking filter has better robustness to model uncertainty and 

stronger tracking ability with respect to mutation states [6]. 

  This paper aims at the problem that the standard UKF lacks 

self-adaptive adjustment of system state anomalies, resulting 

in reduced filtering accuracy. And based on the basic UKF 

algorithm framework, meanwhile combined with the basic 

theory of strong tracking filtering and Sage filtering theory, 

establishes a strong tracking AUKF filtering algorithm with 

multiple suboptimal fading matrices. Through the 

introduction of multiple suboptimal fading matrices, the 

system measurement noise matrix can be re-estimated 

adaptively. This algorithm is applied to the simulation of 

GPS/SINS deeply integrated navigation under the launch 

inertial coordinate. And the results show that compared with 

the standard UKF, the proposed algorithm can better solve the 

problem that the state system and the measurement system 

suffer from the worsening of the accuracy of the interference, 

and has better estimation accuracy and adaptability. 

II.  PROBLEM DESCRIPTION AND UKF ALGORITHM 

  Both UKF and the standard Kalman Filter belong to the 

linear minimum difference estimation, and the algorithms are 

all based on the model. But unlike the standard Kalman Filter, 

the UKF algorithm determines the optimal gain matrix based 

on the covariance matrix measured by the estimator and 

quantity. The covariance matrix is calculated based on 

duplicated sample points. These sample points are determined 

based on the system equations and measurement equations. 

Therefore, UKF did not propose any additional conditions for 

the system equations and measurement equations in 

calculating the optimal gain matrix. The algorithm is suitable 

for both linear and nonlinear objects [7]. 

  In this paper, considers the following discrete-time nonlinear 

systems: 
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  In the formula, kx is the system state vector, +1kz is the 

measurement vector,
 

 gf is the nonlinear state transfer 

function of the system,
 
 gh is the nonlinear measurement 

function of the system,
 kw

 
is the Gaussian white noise and 

kv
 
is the Gaussian white noise. Gaussian white noise satisfies 

the following statistical characteristics: 

Research on a Strong Tracking GPS/SINS Deeply 

Integrated AUKF Filtering Method 

Lin Han, Shuai Chen, Longjiang Fan 



                                                                                

Research on a Strong Tracking GPS/SINS Deeply Integrated AUKF Filtering Method 

                                                                                           33                                                                          www.ijeas.org 

 

T
,

[ ]
0,

k

n k

n k
E

n k

ì =ï
= í

¹ïî

Q
w w

T
,

[ ]
0,

k

n k

n k
E

n k

R
v v

ì =ï
= í

¹ïî
  (2) 

               

  Where:
 kQ

 
is the covariance matrix of kw

 
, kR  is the 

covariance matrix of kv
 
and they are symmetrical and 

non-negative. 

  The specific processes of the standard UKF algorithm are as 

follows: 

Step One: Initialization 

  Assume that the system's initial state 0x
 is a random vector 

of Gaussian distribution.  State initialization conditions: 
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Step Two: Calculate sample points 

  For 1n  , in the case of only considering the mean x̂  and 

covariance kP  of the input variables, x̂  and kP  are 

approximated by Sigma points. The following 2 1n  

sampling points can be obtained from the sampling function 

of the Sigma point symmetrical sampling strategy: 
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In the formula:  k
i

P  is the i-th column of the root mean 

square of the matrix kP , which can be obtained by Cholesky 

decomposition. The determination of the proportional 

parameter   is as follows: 

 2 n n                                 (5) 

Where:   is a small positive number, it can be taken 
410 1   ; 3 n   . 

  Then determine the weight of sampling points: 
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In the formula: The value of   is related to the distribution 

of x . For a normal distribution, 2   is the optimal value. 

Step Three: Prediction equations 
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Step Four: Calculate one-step prediction sampling points 
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Step Five: Update equations 
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III. STRONG TRACKING AUKF ALGORITHM 

A. Strong tracking adaptive filter 

  The Strong Tracking Filter (STF) [6-8] has the following 

characteristics compared to the usual filters: 1) Stronger 

robustness with respect to model uncertainty; 2) Strong ability 

to track the status of mutations; 3) Moderate computational 

complexity. The main idea is to adjust the gain matrix online, 

forcing the residual sequences to be orthogonal to each other. 

This can force the filter to keep track of the state of the system 

when the system model is uncertain, thus improving the poor 

robustness and filtering divergence of UKF. 

  The true covariance matrix of the observation or state of the 

epoch m-step innovation or residual vector estimation is 

compared with the covariance matrix of the filtering 

recurrence model. When there is a deviation between these 

two kinds of covariance, the observed covariance matrix or 

state covariance matrix of the system will be adaptively 

adjusted according to the difference [9]. 

B. The introduction of multiple suboptimal fading 

matrices 

  After the analysis of the above theories, this system uses 

multiple suboptimal evanescent matrixes. Firstly, construct 

the observation covariance matrix with multiple epoch 

residuals. Then use the equivalence relation to obtain the 

self-adaptive correction matrix of measurement noise. Finally, 

use the modified measurement noise to calculate the gain 

matrix to achieve the purpose of adaptive adjustment of the 

state estimation. And re-estimate the nonlinear UKF filtering 

measurement noise. 

  The residual vector is calculated from the true measured 

value and the predicted measured value: 

1| 1 1|
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k k k k k   Z Z Z%                       (18) 
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In the formula: 1kZ  represents the real measurement value 

at time 1k  , provided by GPS; 1|
ˆ

k kZ  represents the 

prediction measurement estimate. 

  If the statistical characteristics of the true error measured by 

the system are consistent with the filtering recursive error 

model, there are: 

T
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In the formula,   represents the number of epoch residuals 

collected. 

  When the system measurement is abnormal, the statistical 

characteristics of the true error of the measurement will be 

inconsistent with the filtering recursive error model. Add the 

evanescent matrix in (19): 
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  Comparing equation (19) and formula (21), we can see that 

1kA  will adjust the filtering result when the noise is 

abnormal. 

  Due to the influence of calculation errors and other factors, 

the matrix needs further processing: 
*

1 1 1( )k ndiag a ,a , ,a A L                  (22) 

In the formula, 1{1,( ) }i k iia max  A ; 1)k ii(A  is the ii-th 

main diagonal element. 

  At this point, the equation (15) of the system update 

equations becomes: 

 
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1
*
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
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  The other equations of the system update equations remain 

as they are. 

  When the noise of a measurement value in the measurement 

vector is abnormal, the corresponding item in the fading 

matrix will increase correspondingly, making the filter gain 

correspondingly smaller, thereby reducing the influence of 

the measurement abnormal value on the system state 

estimation. In addition, when the noises of multiple 

measurement values in the measurement vector are abnormal, 

it can also be accurately adjusted so that the system can obtain 

relatively accurate filtering results. 

 

IV. DEEPLY INTEGRATED NAVIGATION MODEL UNDER 

LAUNCHING INERTIAL COORDINATE SYSTEM 

  The typical feature of GPS/SINS deeply integrated 

navigation system is that the degree of data information fusion 

is deeper, involving the GPS receiver internal tracking loop. 

  Combining the background of the launch inertial coordinate 

system of this paper, the main idea of deeply integrated 

navigation system design based on tightly integrated filter is 

to use INS output parameters and GPS receiver output 

parameters for comparison. The tightly integrated filter 

corresponds to different parameter information. And establish 

system state equations and measurement equations for state 

variables such as INS position error, velocity error and 

attitude error. After the optimal estimation of the AUKF filter, 

outputs the correction information, and the corrected INS 

information is used to assist the GPS receiver tracking loop. 

In this way, the system can suppress the dynamic stress error 

of the GPS tracking loop to a certain extent, reduce the 

tracking loop noise error of the carrier loop, improve the 

dynamic performance and anti-interference ability of the 

system, and achieve mutual assistance of the two systems in 

the observation process. In this system, a tightly integrated 

AUKF filter based on pseudo-range and pseudo-range ratio 

uses the original measurement values (pseudo-range, 

pseudo-range) of the GPS receiver, and this method will not 

introduce the error caused by GPS receiver navigation 

solution [10-11]. 

A. SINS error state equation under launch inertial 

coordinate system 

  The SINS error state equation is: 

( ) ( ) ( ) ( ) ( )t t t t t X F X G W&               (24) 

In the formula, X  represents the state error of the SINS, as 

follows: 

T

x y z x y z
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X
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In the formula: xφ ,
yφ , zφ are the attitude misalignment 

angles of the launch inertial coordinate system; 

xV ,
yV , zV  are the speed errors of the three axis 

directions of the launch inertial coordinate system; 

 X ,Y ,Z  are the position errors of the three axis 

directions of the launch inertial coordinate system; 

xε ,
yε , zε  are constant drifts of the gyroscope in the 

missile carrier coordinate system; x ,
y , z  are the 

constant offsets of the accelerometer in the missile carrier 

coordinate system. 

 tF  is the SINS system state transition matrix;  tG  is 

the SINS system noise drive matrix;  tW  is the SINS 

system noise matrix. The specific calculation formula of each 

matrix is shown in reference [12]. 

B. GPS error state equation under launch inertial 

coordinate system 

  In deeply integrated systems, the error state of the GPS 

receiver is usually taken as: the distance-rate error equivalent 

to the clock frequency error, and the distance error equivalent 

to the clock-frequency error. The state equation is: 
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In the formula above: 
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 Equations (24) and (26) form the state equation of the deeply 

integrated navigation system in the launch inertial coordinate 

system. 

C. Measurement equation under launch inertial 

coordinate system 

  In this system, the deeply integrated GPS/SINS navigation 

system of ballistic missiles in the launch inertial coordinate 

system is divided into two parts: the pseudo-range 

measurement equation and the pseudo-range rate 

measurement equation. The expression is as follows: 

i g

i g





  
        

ρ ρρ
Z

ρ ρρ & &&
                      (27) 

  At some point, the true value of the position of the missile in 

the launch inertial coordinate system is 
T

X Y Z . If the 

true distance from the missile to the GPS satellite is  . The 

pseudo-range between the GPS receiver's position and the i-th 

satellite can be expressed as: 

g ul v                                (28) 

Where: ul  is the distance error caused by the GPS clock 

error and v  is the pseudo-range measurement noise. 

    and i  can be calculated by the following formula: 

     

     

2 2 2

2 2 2

j j j

s s s

j j j

i i s i s i s

X X Y Y Z Z

X X Y Y Z Z






     


      


    (29) 

In the formula:  
T

i i iX Y Z  is the position of the missile in 

the launch inertial coordinate system calculated by SINS, and 
j j j

s s sX Y Z    is the position coordinate of the i-th satellite 

converted to the launch inertial coordinate system. 

  Assume that  
T

X Y Z    is the distance error 

between the SINS calculation position and the real position. 

Then: 

i
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                            (30) 

  Therefore, the pseudo-range difference nonlinear 

measurement equation is: 

i g i ul v                    (31) 

  In the same way, the pseudo-range rate difference nonlinear 

measurement equation is: 

i g i rul v           &
& & & & &          (32) 

Where: & represents the true pseudo-range rate at the 

moment; rul  is the speed error caused by the GPS clock; 

v& is the measurement noise. The specific derivation process 

is shown in reference [12]. 

  From the above derivation, we can get the nonlinear 

measurement equation of GPS/SINS deeply integrated 

navigation in the launch inertial system. It should be noted 

that due to the nonlinear UKF filtering method, the system 

measurement equation does not need to be linearized. 

V. THE SIMULATION AND RESULTS 

  In order to verify the superiority of the strong tracking 

GPS/SINS deeply integrated AUKF algorithm. Deeply 

integrated navigation simulation experiments were conducted 

in ballistic trajectory simulation platform and compared with 

the standard Unscented Kalman Filter (UKF). 

A. Simulation conditions 

  The launch azimuth is 90°. And the initial speed in the 

launch inertial coordinate system is 394.8917 m/s (the speed 

of the Earth's rotation), and both the vertical direction and the 

lateral direction speed are 0 m/s.  

  The number of stars collected is four. 

  GPS sampling period is 1s, INS sampling period is 0.005s, 

the filtering period is 1s, and the simulation time is 360s. 

  The initial attitude: pitch angle is 90°; roll angle and yaw 

angle are all 0°. 

  The initial position: latitude is 31.98°; longitude is118.8°; 

height is 0m. 

  The gyroscope zero bias is 10°/h and white noise is 1°/h. The 

accelerometer zero bias is 1 mg and white noise is 0.5 mg. 

  In the 200s-210s period, the GPS pseudo-range adds white 

noise with a mean value of 0 and a standard deviation of 100, 

and the GPS pseudo-range rate adds white noise with a mean 

of 0 and a standard deviation of 1. 

  The trajectory of ballistic missile is shown in Figure 1. 

B. Simulation Results and Analysis 
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Figure.1 Trajectory of ballistic missile 
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Figure.2 UKF and AUKF X-direction position error 
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Figure.3 UKF and AUKF Y-direction position error 
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Figure.4 UKF and AUKF Z-direction position error 

  From the comparison of figure 2, figure 3 and figure 4, we 

can see that in the 200s-210s system subjected to strong 

interference, the X direction, Y direction and Z direction 

position error of the standard UKF algorithm are -13.11m, 

-11.53m, 3.80m; the X direction, Y direction and Z direction 

position error of the strong tracking AUKF algorithm are 

-0.28m, -2.66m, 2.12m. The absolute error is less than the 

standard UKF error. In addition, when the system is strongly 

interfered with, the strong tracking AUKF error fluctuation is 

small, the convergence speed is fast, the precision of 

integrated navigation positioning is greatly improved, and it 

has superior anti-interference ability and robustness. 

VI. CONCLUSION 

  In view of the characteristics of high dynamic and strong 

interference of ballistic missiles and the problem of poor 

tracking ability and low filtering accuracy of standard UKF in 

this environment, this paper proposes a strong tracking AUKF 

algorithm. By introducing multiple suboptimal fading 

matrices, the algorithm can adjust the filter adaptively 

according to the measured characteristics of the system and 

increase the robust performance of the system. The algorithm 

is applied to GPS/SINS deep integrated navigation system in 

the launch inertial coordinate system. Simulation results show 

that the proposed algorithm can provide high precision 

navigation information for integrated navigation and proves 

the effectiveness of the algorithm. 
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